Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica
نویسندگان
چکیده
The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica.
منابع مشابه
Roles of the three Ras proteins in the regulation of dimorphic transition in the yeast Yarrowia lipolytica.
Ras proteins in the budding yeast Saccharomyces cerevisiae are essential for growth and dimorphic transition. The dimorphic yeast Yarrowia lipolytica is distantly related to S. cerevisiae. Its genome encodes three Ras proteins. Here, we show that the three Ras proteins in Y. lipolytica are critical for dimorphic transition but are dispensable for growth. Among the three Ras proteins, YlRas2 pla...
متن کاملMHY1 encodes a C2H2-type zinc finger protein that promotes dimorphic transition in the yeast Yarrowia lipolytica.
The yeast-to-hypha morphological transition (dimorphism) is typical of many pathogenic fungi. Dimorphism has been attributed to changes in temperature and nutritional status and is believed to constitute a mechanism of response to adverse conditions. We have isolated and characterized a gene, MHY1, whose transcription is dramatically increased during the yeast-to-hypha transition in Yarrowia li...
متن کاملAluminum impairs morphogenic transition and stimulates H(+) transport mediated by the plasma membrane ATPase of Yarrowia lipolytica.
The effect of aluminum on dimorphic fungi Yarrowia lipolytica was investigated. High aluminum (0.5-1.0 mM AlK(SO(4))(2)) inhibits yeast-hypha transition. Both vanadate-sensitive H(+) transport and ATPase activities were increased in total membranes isolated from aluminum-treated cells, indicating that a plasma membrane H(+) pump was stimulated by aluminum. Furthermore, Al-treated cells showed a...
متن کاملIsolation and characterization of YlBEM1, a gene required for cell polarization and differentiation in the dimorphic yeast Yarrowia lipolytica.
The ability to switch between a unicellular yeast form and different filamentous forms (fungal dimorphism) is an important attribute of most pathogenic fungi. Dimorphism involves a series of events that ultimately result in dramatic changes in the polarity of cell growth in response to environmental factors. We have isolated and characterized YlBEM1, a gene encoding a protein of 639 amino acids...
متن کاملDraft Genome Sequence of the Dimorphic Yeast Yarrowia lipolytica Strain W29.
Here, we present the draft genome sequence of the dimorphic ascomycete yeast Yarrowia lipolytica strain W29 (ATCC 20460). Y. lipolytica is a commonly employed model for the industrial production of lipases, small molecules, and more recently for its ability to accumulate lipids.
متن کامل